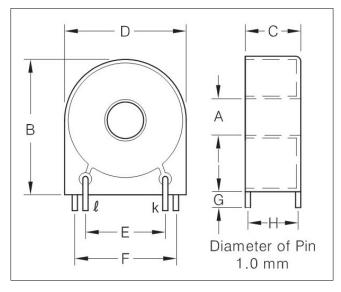
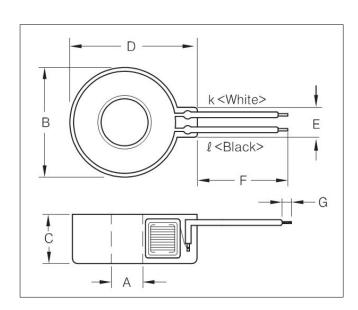

Rigid Rogowski Coils

Taehwatrans rigid Rogowski coils are an air cored (non-magnetic) toroidal windings positioned round the conductor. An alternating magnetic field generated by the current in the primary conductor induces a voltage in the coil. Thanks to low inductance and its non-magnetic core, Rogowski coils have the output voltage linearity proportional to the frequency increase and the output of the coil does not saturate for a high primary current more than 1kA and, leading to achieve a great accuracy on high current range. Traditional current transformers for high current measurement are bulky and heavy so that they seriously limit the design flexibility of systems. However, Rogowski coils with compact and light weight design, can provide great advantage for system design to be smarter and more compact.

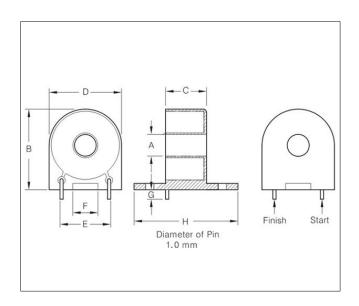
Application

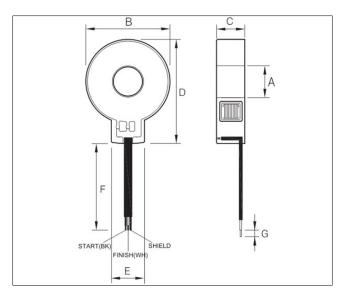

- Smart reclosure in distribution grid
- Air circuit breakers (ACB)
- Gas insulation switchgear (GIS)
- Electronic sectionalizer
- Load balancing
- Power monitoring & Energy metering

Features


- Excellent accuracy
- Wider frequency up to 1 MHz
- High current measurement without saturation

I. Miniature Rogowski Coils


Drawing

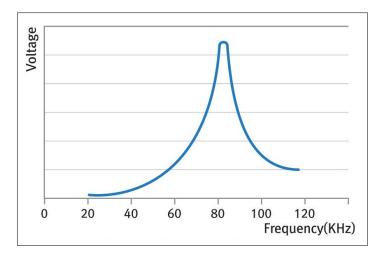

PCB Mountable Type

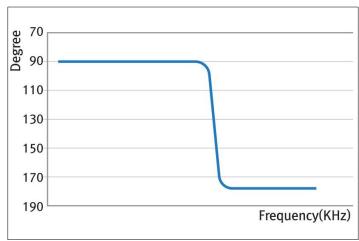
Lead Wire Type

TR71VA

TRIOLSC (Shield Cable)

Electrical Property & Dimension

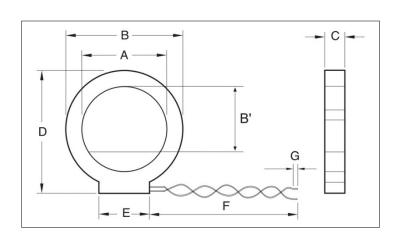

Dimension F: 50Hz


Model NO	DCR(Ω) ±6%	Rated Current(A)	Max Current(KA)	Self Current(KA)	Mutual Inductance	Max Stray Noise Vo	Max Multual Inductance Erro(%)	Output Voltage at 100A	Instant Peak Amp(KA)
TR77V/L	100Ω		10kA	0.7mH	0.69µH	1.3mV	0.60%	21.6mV	64kA
TR71V/L	181Ω		9kA	7.6mH	3.25µH	0.3mV	0.03%	102.2mV	54kA
TR71VA	13.5Ω		13kA	0.4mH	0.80µH	0.3mV	0.12%	25.0mV	81kA
TR10VSH	1,000A 173Ω								
TR10LSH		173Ω	6kA	5.8mH	2.13µH	0.6mV	0.09%	66.9mV	39kA
TR10LSC									
TR9L	200Ω		6kA	20.9mH	4.48µH	4.0mV	0.28%	140.8mV	40kA

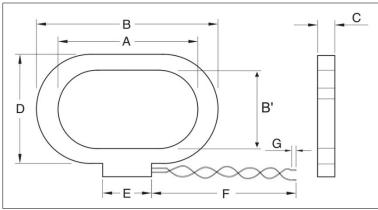
Dimension unit:mm

Model NO	A(min)	B(max)	C(max)	D(max)	E(±0.3)	F(±0.3)	G(±0.5)	H(±0.3)
TR77V	6.8	25.0	11.0	23.5	15.1	19.1	3.0	9.1
TR77L	6.9	23.6	11.0	26.8	7.1	71.0	3.0	
TR71V	8.9	27.5	17.0	25.3	15.1	19.1	3.0	15.1
TR71L	8.9	24.8	17.0	28.4	7.6	65.0	3.0	
TR71VA	8.9	27.7	20.3	25.3	15.1	9.0	3.0	4.0
TR10VSH	12.9	39.3	14.0	38.0	25.2	32.8	3.0	12.1
TR10LSH	12.9	37.5	14.0	41.3	10.3	240.0	5.0	
TR10LSC	12.9	37.5	14.0	46.8	14.9	381.0	5.0	
TR9L	19.6	48.2	19.2	52.0	13.2	270.0	5.0	

Frequency Vs Typical Output Gain Diagram



TR10LSC Frequency Response


TR10LSC Phase Curve

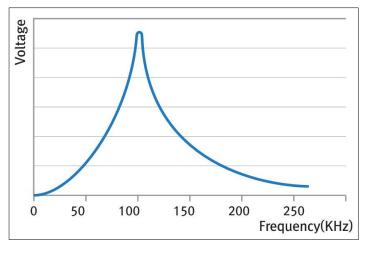
II. ACB & GIS Application Rogowski Coils

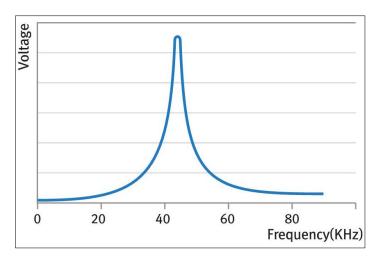
Drawing

Round Type (TR1L ~ TR4L)

Track Type (TR5L ~ TR8L)

Electrical Property & Dimension

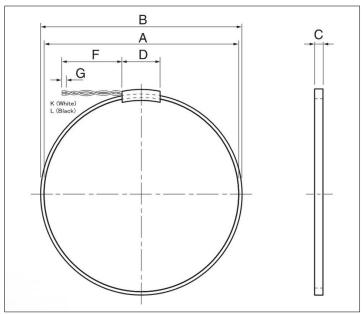

Dimension F: 50Hz


Model NO	Current Rating(A)	Output V at Primary	Max Current(kA)	Self Inductance	Mutual Inductance	Max Stray Noise Voltage	Max Mutual Inductance Error(%)
TR1L	630A		55kA	1.72mH	0.856μ		
TR2L	1000A		44kA	0.69mH	0.54µ		
TR3L	1250A		51kA	0.43mH	0.543µ		
TR4L	1600A	16.97mV	60kA	0.26mH	0.34μ	0.3mV	0.18%
TR5L	2000A		90kA	0.32mH	0.27μ		
TR6L	2500A		120kA	0.2mH	0.22μ		
TR7L	3200A		120kA	0.13mH	0.17μ		
TR8L	4000A		90kA	0.33mH	0.14μ		

Dimension unit: mm

Model NO	A(min)	B(max)	B'(max)	C(max)	D(max)	E(max)	F(±7)	G(±1)
TR1L		75.0	48.9	12.5	76.5	31.5	300.0	5.0
TR2L	53.0							
TR3L	53.0							
TR4L								
TR5L	98.0			44.0	70.0			
TR6L		119.0 54.4	E4.4					
TR7L			11.0	76.0				
TR8L								

Frequency Vs Typical Output Gain Diagram

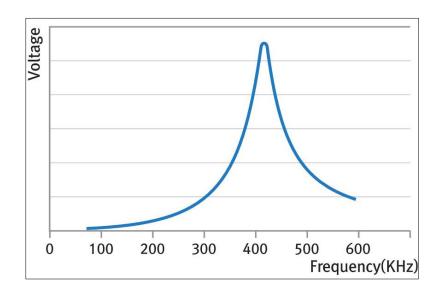

TR1L Frequency Response

TR9L Frequency Response

III. Switch Gear Application Rogowski Coils (Model: TFR610)

Drawing

Electrical Property & Dimension


Dimension unit: mm

A(min)	B(max)	C(max)	D(max)	F(±5)	G(±1)
190	200	10	50	200	10
7.48"	7.87"	0.39"	1.97"	7.87"	0.38"

Electrical Property

Output (1000A, 60Hz)	400mV	Operating Frequency	20Hz~20KHz	
Standard Accuracy	Class 0.5	Dynamic Current Range	72KA	
Phase displacement	0.5°	High Potential Volatge	a.c.2500V	
Reading Error (20% Rating)	≤ 0.75%	Temp Range	-40°C ~ +80°C	
Max Positioning Error	Avr.± 0.5%(max 1%)	Insulation Resistance	DC500V/100MΩ Min	
Max External Stray Mutual Inductance Error (1000A, AC0.5mT)	< 0.1%			

Frequency Vs Typical Output Gain Diagram

TFR610 Frequency Response

ASRAS CO.,LTD 1694, 1694/1 Prachasongkhro Road Dingdaeng, Dindaeng, Bangkok 10400 Tel. 02-277-9969, Fax 02-277-0995

E-mail: sales@asras.co.th Website: www.asras.co.th